分布式ID解决方案详解

频道:行业资讯 日期: 浏览:865
在分布式系统中,生成全局唯一ID是非常重要的,因为在分布式系统中,多个节点同时生成ID可能会导致ID冲突。下面介绍几种常用的分布式ID解决方案。

UUID

UUID(通用唯一标识符)是由128位数字组成的标识符,它可以保证在全球范围内的唯一性,因为其生成算法基于时间戳、节点ID等因素。UUID可以使用Java自带的UUID类来生成,如下所示:

复制

javaCopy code

import java.util.UUID;

public class UuidGenerator {

public static void main(String[] args) {

UUID uuid = UUID.randomUUID();

System.out.println(uuid.toString());

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

UUID的优点是简单易用,无需额外的配置和管理,可以直接使用Java自带的UUID类生成。但是UUID长度较长(128位),不太适合作为数据库表的主键,且不易于排序和索引。

Snowflake

Snowflake是Twitter开源的一种分布式ID生成算法,它可以生成64位的唯一ID,其中包含了时间戳、数据中心ID和机器ID等信息。Snowflake算法的Java代码如下所示:

Snowflake算法的Java代码:

复制

javaCopy code

public class SnowflakeGenerator {

private final static long START_STMP = 1480166465631L;

private final static long SEQUENCE_BIT = 12;

private final static long MACHINE_BIT = 5;

private final static long DATACENTER_BIT = 5;

private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);

private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);

private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

private final static long MACHINE_LEFT = SEQUENCE_BIT;

private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;

private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

private long datacenterId;

private long machineId;

private long sequence = 0L;

private long lastStmp = -1L;

public SnowflakeGenerator(long datacenterId, long machineId) {

if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {

throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");

}

if (machineId > MAX_MACHINE_NUM || machineId < 0) {

throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");

}

this.datacenterId = datacenterId;

this.machineId = machineId;

}

public synchronized long nextId() {

long currStmp = getNewstmp();

if (currStmp < lastStmp) {

throw new RuntimeException("Clock moved backwards. Refusing to generate id");

}

if (currStmp == lastStmp) {

sequence = (sequence + 1) & MAX_SEQUENCE;

if (sequence == 0L) {

currStmp = getNextMill();

}

} else {

sequence = 0L;

}

lastStmp = currStmp;

return (currStmp - START_STMP) << TIMESTMP_LEFT

| datacenterId << DATACENTER_LEFT

| machineId << MACHINE_LEFT

| sequence;

}

private long getNextMill() {

long mill = getNewstmp();

while (mill <= lastStmp) {

mill = getNewstmp();

}

return mill;

}

private long getNewstmp() {

return System.currentTimeMillis();

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Snowflake算法的优点是生成ID的性能高,且ID长度较短(64位),可以作为数据库表的主键,且便于排序和索引。但是需要注意,如果集群中的节点数超过了机器ID所占的位数,或者集群规模很大,时间戳位数不够用,那么就需要考虑其他的分布式ID生成算法。

Leaf

Leaf是美团点评开源的一种分布式ID生成算法,它可以生成全局唯一的64位ID。Leaf算法的Java代码如下所示:

Leaf算法的Java代码:

复制

javaCopy code

public class LeafGenerator {

private static final Logger logger = LoggerFactory.getLogger(LeafGenerator.class);

private static final String WORKER_ID_KEY = "leaf.worker.id";

private static final String PORT_KEY = "leaf.port";

private static final int DEFAULT_PORT = 8080;

private static final int DEFAULT_WORKER_ID = 0;

private static final int WORKER_ID_BITS = 10;

private static final int SEQUENCE_BITS = 12;

private static final int MAX_WORKER_ID = (1 << WORKER_ID_BITS) - 1;

private static final int MAX_SEQUENCE = (1 << SEQUENCE_BITS) - 1;

private static final long EPOCH = 1514736000000L;

private final SnowflakeIdWorker idWorker;

public LeafGenerator() {

int workerId = SystemPropertyUtil.getInt(WORKER_ID_KEY, DEFAULT_WORKER_ID);

int port = SystemPropertyUtil.getInt(PORT_KEY, DEFAULT_PORT);

this.idWorker = new SnowflakeIdWorker(workerId, port);

logger.info("Initialized LeafGenerator with workerId={}, port={}", workerId, port);

}

public long nextId() {

return idWorker.nextId();

}

private static class SnowflakeIdWorker {

private final long workerId;

private final long port;

private long sequence = 0L;

private long lastTimestamp = -1L;

SnowflakeIdWorker(long workerId, long port) {

if (workerId < 0 || workerId > MAX_WORKER_ID) {

throw new IllegalArgumentException(String.format("workerId must be between %d and %d", 0, MAX_WORKER_ID));

}

this.workerId = workerId;

this.port = port;

}

synchronized long nextId() {

long timestamp = System.currentTimeMillis();

if (timestamp < lastTimestamp) {

throw new RuntimeException("Clock moved backwards. Refusing to generate id");

}

if (timestamp == lastTimestamp) {

sequence = (sequence + 1) & MAX_SEQUENCE;

if (sequence == 0L) {

timestamp = tilNextMillis(lastTimestamp);

}

} else {

sequence = 0L;

}

lastTimestamp = timestamp;

return ((timestamp - EPOCH) << (WORKER_ID_BITS + SEQUENCE_BITS))

| (workerId << SEQUENCE_BITS)

| sequence;

}

private long tilNextMillis(long lastTimestamp) {

long timestamp = System.currentTimeMillis();

while (timestamp <= lastTimestamp) {

timestamp = System.currentTimeMillis();

}

return timestamp;

}

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Leaf算法的特点是生成ID的速度比Snowflake算法略慢,但是可以支持更多的Worker节点。Leaf算法生成的ID由三部分组成,分别是时间戳、Worker ID和序列号,其中时间戳占用42位、Worker ID占用10位、序列号占用12位,总共64位。

以上是常见的分布式ID生成算法,当然还有其他的一些方案,如:MongoDB ID、UUID、Twitter Snowflake等。不同的方案适用于不同的业务场景,具体实现细节和性能表现也有所不同,需要根据实际情况选择合适的方案。

除了上述介绍的分布式ID生成算法,还有一些新的分布式ID生成方案不断涌现,例如Flicker的分布式ID生成算法,它使用了类似于Snowflake的思想,但是采用了不同的位数分配方式,相比Snowflake更加灵活,并且可以根据需要动态调整每个部分占用的位数。此外,Facebook还推出了ID Generation Service (IGS)方案,该方案将ID的生成和存储分离,提供了更加灵活和可扩展的方案,但是需要进行更加复杂的架构设计和实现。

针对不同的业务需求,可以设计多套分布式ID生成方案。下面是我个人的一些建议:

基于数据库自增ID生成:使用数据库自增ID作为全局唯一ID,可以很好的保证ID的唯一性,并且实现简单,但是并发量较高时可能会导致性能瓶颈。因此,在高并发场景下不建议使用。

基于UUID生成:使用UUID作为全局唯一ID,可以很好地保证ID的唯一性,但是ID长度较长(128位),不便于存储和传输,并且存在重复ID的概率非常小但不为0。因此,建议在分布式系统中使用时要考虑ID的长度和存储传输的成本。

基于Redis生成:使用Redis的原子性操作,可以保证ID的唯一性,并且生成ID的速度非常快,可以适用于高并发场景。但是需要注意,如果Redis宕机或者性能不足,可能会影响ID的生成效率和可用性。

基于ZooKeeper生成:使用ZooKeeper的序列号生成器,可以保证ID的唯一性,并且实现较为简单,但是需要引入额外的依赖和资源,并且可能会存在性能瓶颈。

选择适合自己业务场景的分布式ID生成方案,需要综合考虑ID的唯一性、生成速度、长度、存储成本、可扩展性、可用性等多个因素。同时需要注意,不同方案的实现细节和性能表现也有所不同,需要根据实际情况进行权衡和选择。

下面给出每种方案的详细代码demo:

基于数据库自增ID生成

复制

javaCopy code

public class IdGenerator {

private static final String JDBC_URL = "jdbc:mysql://localhost:3306/test";

private static final String JDBC_USER = "root";

private static final String JDBC_PASSWORD = "password";

public long generateId() {

Connection conn = null;

PreparedStatement pstmt = null;

ResultSet rs = null;

try {

Class.forName("com.mysql.jdbc.Driver");

conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD);

pstmt = conn.prepareStatement("INSERT INTO id_generator (stub) VALUES (null)", Statement.RETURN_GENERATED_KEYS);

pstmt.executeUpdate();

rs = pstmt.getGeneratedKeys();

if (rs.next()) {

return rs.getLong(1);

}

} catch (Exception e) {

e.printStackTrace();

} finally {

try {

if (rs != null) {

rs.close();

}

if (pstmt != null) {

pstmt.close();

}

if (conn != null) {

conn.close();

}

} catch (Exception e) {

e.printStackTrace();

}

}

return 0L;

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

基于UUID生成

复制

javaCopy code

import java.util.UUID;

public class IdGenerator {

public String generateId() {

return UUID.randomUUID().toString().replace("-", "");

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

基于Redis生成

复制

javaCopy code

import redis.clients.jedis.Jedis;

public class IdGenerator {

private static final String REDIS_HOST = "localhost";

private static final int REDIS_PORT = 6379;

private static final String REDIS_PASSWORD = "password";

private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;

private static final String ID_GENERATOR_KEY = "id_generator";

public long generateId() {

Jedis jedis = null;

try {

jedis = new Jedis(REDIS_HOST, REDIS_PORT);

jedis.auth(REDIS_PASSWORD);

long id = jedis.incr(ID_GENERATOR_KEY);

jedis.expire(ID_GENERATOR_KEY, ID_GENERATOR_EXPIRE_SECONDS);

return id;

} catch (Exception e) {

e.printStackTrace();

} finally {

if (jedis != null) {

jedis.close();

}

}

return 0L;

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

基于ZooKeeper生成

复制

javaCopy code

import java.util.concurrent.CountDownLatch;

import org.apache.zookeeper.CreateMode;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.ZooDefs.Ids;

import org.apache.zookeeper.ZooKeeper;

public class IdGenerator implements Watcher {

private static final String ZK_HOST = "localhost";

private static final int ZK_PORT = 2181;

private static final int SESSION_TIMEOUT = 5000;

private static final String ID_GENERATOR_NODE = "/id_generator";

private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;

private long workerId = 0;

public IdGenerator() {

try {

ZooKeeper zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, this);

CountDownLatch latch = new CountDownLatch(1);

latch.await();

if (zk.exists(ID_GENERATOR_NODE, false) == null) {

zk.create(ID_GENERATOR_NODE, null, Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);

}

workerId = zk.getChildren(ID_GENERATOR_NODE, false).size();

zk.create(ID_GENERATOR_NODE + "/worker_" + workerId, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);

} catch (Exception e) {

e.printStackTrace();

}

}

public long generateId() {

ZooKeeper zk = null;

try {

zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, null);

CountDownLatch latch = new CountDownLatch(1);

latch.await();

zk.create(ID_GENERATOR_NODE + "/id_", null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, (rc, path, ctx, name) -> {}, null);

byte[] data = zk.getData(ID_GENERATOR_NODE + "/worker_" + workerId, false, null);

long id = Long.parseLong(new String(data)) * 10000 + zk.getChildren(ID_GENERATOR_NODE, false).size();

return id;

} catch (Exception e) {

e.printStackTrace();

} finally {

if (zk != null) {

try {

zk.close();

} catch (Exception e) {

e.printStackTrace();

}

}

}

return 0L;

}

@Override

public void process(WatchedEvent event) {

if (event.getState() == Event.KeeperState.SyncConnected) {

System.out.println("Connected to ZooKeeper");

CountDownLatch latch = new CountDownLatch(1);

latch.countDown();

}

}

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

注意,这里使用了ZooKeeper的临时节点来协调各个工作节点,如果一个工作节点挂掉了,它的临时节点也会被删除,这样可以保证每个工作节点获得的ID是唯一的。

以上就是各种分布式ID生成方案的详细代码demo,实际上,每种方案都有其优缺点,应根据具体业务场景和系统架构选择合适的方案。

0 留言

评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。